星元集团
 
 
星元集团

Deep Learning

Deep Learning GPU Assembly and Debugging Accelerated Computing GPU Maintenance Computing Platform Development
Deep Learning

Module 1: Fundamentals of Deep Learning

    1.1 Overview of Machine Learning and Deep Learning

            • Machine Learning vs. Deep Learning vs. Traditional Algorithms
            • Supervised, Unsupervised, and Reinforcement Learning
            • Key Application Areas: Computer Vision, NLP, Recommendation Systems, Autonomous Driving


    1.2 Basics of Neural Networks

            • Perceptron Model
            • Multi-Layer Perceptron (MLP) & Feedforward Neural Network (FNN)
            • Activation Functions: ReLU, Sigmoid, Tanh, Leaky ReLU
            • Loss Functions: Mean Squared Error (MSE), Cross Entropy

    1.3 Backpropagation & Optimization

            • Backpropagation Algorithm

            • Gradient Descent: SGD, Momentum, Adam, RMSprop
            • Overfitting and Regularization: L1/L2, Dropout, Batch Normalization


Module 2: Deep Learning Frameworks

    2.1 TensorFlow & PyTorch

            • Comparison: TensorFlow vs. PyTorch
            • PyTorch Tensors Basics
            • TensorFlow Computational Graph
            • GPU Acceleration: CUDA, cuDNN


    2.2 Building Neural Networks

            • PyTorch Lightning / TensorFlow Keras
             • Data Loading: Dataloader & Dataset
             • Training, Validation, Testing Splits
             • Model Saving and Loading: Checkpointing & Serialization

Module 3: Computer Vision (CV)

    3.1 Convolutional Neural Networks (CNNs)

            • Convolution, Pooling
            • Popular Architectures: AlexNet, VGG, ResNet, DenseNet
            • Transfer Learning

    3.2 Object Detection and Segmentation

            • Object Detection: YOLO, Faster R-CNN, SSD
            • Semantic Segmentation: UNet, DeepLab
            • Facial Recognition: FaceNet, MTCNN

    3.3 Generative Adversarial Networks (GANs)

            • GAN Basics: Generator vs. Discriminator
            • Popular Variants: DCGAN, StyleGAN, CycleGAN
            • Image Generation & Style Transfer


Module 4: Natural Language Processing (NLP)

    4.1 Word Embeddings

            • Traditional Methods: TF-IDF, Word2Vec, GloVe
            • Pretrained Models: BERT, GPT, T5
            • Transformer Architecture: Self-Attention, Multi-Head Attention, Positional Encoding

    4.2 Language Models

            • RNN, LSTM, GRU
            • Transformer, BERT, GPT, T5
            • Text Generation


    4.3 NLP Tasks

            • Text Classification: Sentiment Analysis, Spam Detection
            • Machine Translation: Seq2Seq, Attention
            • Question Answering: BERT for QA, OpenAI ChatGPT API


Module 5: Reinforcement Learning (RL)

    5.1 RL Fundamentals

            • Markov Decision Process (MDP)
            • Q-Learning, Deep Q-Network (DQN)
            • Policy Gradient, Actor-Critic

    5.2 Advanced RL Algorithms

            • A3C, PPO, SAC
            • AlphaGo, DeepMind MuZero
            • Applications in Robotics, Finance, Autonomous Driving

Module 6: Model Optimization & Deployment

    6.1 Training Acceleration

            • Data Augmentation
            • Mixed Precision Training (FP16)
            • Model Parallelism & Distributed Training: Horovod, DeepSpeed

    6.2 Model Deployment

            • ONNX Conversion & Optimization
            • TensorRT / OpenVINO Acceleration
            • Cloud Deployment: AWS SageMaker, Google Vertex AI
            • Edge Deployment: NVIDIA Jetson, Raspberry Pi

Module 7: AI Applications & Project Practice

            • CV Applications: Autonomous Driving, Medical Imaging
            • NLP Applications: Intelligent Customer Service, AI Writing Assistants
            • AI for Business: Recommendation Systems, Robo-Advisors
            • Cross-Modal Learning: Combining CV + NLP (CLIP, DALL·E)


微信图片_20250401233708.jpg

Deep Learning


Back to top

Contact Us

+1-8259866358 Email: infor@novatech-alberta.com 09:00:00 - 18:00:00
Copyright2025@NovaTech