星元集团
 
 
星元集团

GPU Maintenance

Deep Learning GPU Assembly and Debugging Accelerated Computing GPU Maintenance Computing Platform Development
GPU Maintenance

Module 1: Basics of GPU Hardware

    1.1 GPU Structural Composition
            • GPU Architecture Analysis (Core, Stream Processors, VRAM, Power Supply Modules)
            • PCB Circuit Analysis (Capacitors, Inductors, MOSFETs, VRM)
            • Cooling Systems (Air Cooling, Liquid Cooling, Heat Pipes, Thermal Paste)

    1.2 Major GPU Brands and Models
            
• NVIDIA (Tesla, A100, H100, RTX Series)
            • AMD (Instinct MI250, Radeon Pro, RX Series)
            • Intel (Arc GPU, Data Center GPU)

Module 2: GPU Fault Detection and Diagnosis

    2.1 GPU Hardware Fault Analysis
   
         • Black Screen, Artifacts, VRAM Errors
            • Power Supply Faults (Burnt MOSFET, VRM Overheating)
            • Fan Anomalies (Noise, Stopping)
            • Overheating and Throttling (Automatic Throttling, System Reboots)
            • VRAM Faults (ECC Errors, VRAM Damage)

    2.2 GPU Software Fault Analysis
     
       • Driver Conflicts and Update Failures
            • CUDA Computation Errors (GPU Not Recognized, Tensor Core Errors)
            • Frequent Crashes (Deep Learning Training / Game Freezes)
            • PCIe Connection Issues (GPU Not Detected in Device Manager)

Module 3: GPU Repair Techniques

    3.1 Hardware-Level Repair
           
 • PCB Inspection and Reworking (BGA Rework, VRAM Replacement)
            • VRM Power Circuit Repair (MOSFET / Inductor Replacement)
            • Cooling System Maintenance (Fan Replacement, Thermal Paste, Thermal Pads)

    3.2 Software-Level Repair
           
 • GPU Driver Repair (NVIDIA/AMD/Intel Driver Rollback, Reinstallation)
            • BIOS Flashing and Repair (VBIOS Backup, Flashing)
            • Deep Learning Environment Troubleshooting (CUDA, cuDNN, TensorFlow/PyTorch Compatibility)

Module 4: GPU Maintenance and Optimization

    4.1 Data Center GPU Maintenance
            
• Server GPUs (A100, H100, MI250) Daily Maintenance
            • Cleaning and Cooling Management (Air Cooling vs. Liquid Cooling)
            • Remote Monitoring Tools (NVIDIA SMI, ROCm System Monitor)
            • Power and Temperature Management (Power Consumption Optimization, Energy Saving Mode)

    4.2 High-Performance GPU Tuning
          
  • Overclocking and Voltage Optimization (Afterburner, NVIDIA PowerMizer)
            • VRAM Optimization (ECC Monitoring, VRAM Temperature Control)
            • HPC Computational Task Optimization (Multi-GPU Training, PCIe Passthrough)




Module 1: Intelligent Computing Center Architecture Basics

    1.1 Overview of Intelligent Computing Centers

             What is an Intelligent Computing Center ?

            • Computing Architectures (CPU, GPU, FPGA, TPU, ASIC)

            • Computing Network Architecture (InfiniBand vs. Ethernet vs. RDMA)

            • Storage Architecture (HPC File Systems, NVMe, Distributed Storage)

    1.2 Computing Resources and Power Pooling

            • Physical Computing Resources (GPU Servers, FPGA Acceleration Cards)

            • Virtualization and Containerization (Docker, Kubernetes, Singularity)

            • GPU Resource Pooling (MIG, Multi-Tenant GPU Resource Management)

            • Elastic Computing (Auto Scaling, Serverless Computing)




Module 2: Power Platform Development and Management

    2.1 Power Scheduling System

             • Task Scheduling Principles (FIFO, Fair Sharing, Gang Scheduling)

             • HPC/AI Task Management Tools (SLURM, Kubernetes, Ray)

              GPU/TPU Scheduling Optimization (NVIDIA DCGM, K8s GPU Operator)

    2.2 Power Virtualization and Resource Isolation

               GPU Sharing Technologies (vGPU, MIG, Passthrough)

              Automatic Resource Allocation (Helm, Kubernetes Scheduler)

              QoS (Quality of Service) and SLA Management

    2.3 Multi-Cluster Power Scheduling

                Cross-Data Center Resource Integration (Federated Learning, Distributed Computing)

              Cloud + On-Premise Hybrid Scheduling (Hybrid Cloud Computing)

              Comparison of Major Scheduling Systems (Kubernetes vs. SLURM vs. Mesos)




Module 3: AI Computing Optimization

    3.1 AI Training Task Scheduling Optimization

            • PyTorch/TensorFlow Distributed Training Optimization

            • Data Preprocessing Pipeline Optimization (TFData, DALI, DataLoader)

            • Mixed Precision Training (FP16, BF16, INT8 Computing)

    3.2 High-Performance Computing (HPC) Optimization

            • Computational Task Optimization (MPI Parallel Computing, OpenMP)

            • Parallel Storage Optimization (Lustre, CephFS, BeeGFS)

            • InfiniBand High-Speed Network Optimization (RDMA, NVLink)




Module 4: Power Platform Operations and Monitoring

    4.1 Computing Resource Monitoring

             GPU/CPU Monitoring (NVIDIA SMI, Prometheus + Grafana)

             Node Health Check (DCGM, K8s Node Problem Detector)

             Task Performance Analysis (NVIDIA Nsight, TensorBoard Profiler)

    4.2 Power Efficiency Management

             GPU/CPU Load Balancing

             Low Power Computing Mode (NVIDIA PowerMizer, Dynamic Clocking)

             Green Computing (Energy-Efficient Scheduling, Carbon Emission Optimization)




Module 5: Power Platform Security and Permissions Management

    5.1 Data and Computing Security

             AI Task Isolation (Kubernetes RBAC, Multi-Tenant)

             Data Encryption (TPM, Confidential Computing)

             GPU Access Control (GPU Sandbox, vGPU RBAC)

    5.2 User Permissions and Billing Management

             Computing Resource Quotas (Quota & Limit Management)

             Task Priority Management (Preemption & Fair Scheduling)

             Computing Billing Statistics (GPU Usage Billing, Cost Optimization)




Module 6: Cloud Intelligent Computing Platform Architecture and Practice

    6.1 Public Cloud Power Platform Setup

             AWS SageMaker, GCP AI Platform, Azure ML

             Kubernetes + Kubeflow for AI Task Management

    6.2 Self-Built Intelligent Computing Center Case Studies

             Enterprise AI Power Center Construction (Nova Tech, Alibaba Cloud PAIS, Baidu AI Cloud)

             University AI Computing Platforms (Tsinghua Intelligent Computing Center, Berkeley HPC Center)

             Government and Research Intelligent Computing Platforms (China National Supercomputing Center, NASA Ames HPC)




GPU Maintenance.jpg

GPU Maintenance


Back to top

Contact Us

+1-8259866358 Email: infor@novatech-alberta.com 09:00:00 - 18:00:00
Copyright2025@NovaTech