星元集团
 
 
星元集团

GPU Assembly and Debugging

Deep Learning GPU Assembly and Debugging Accelerated Computing GPU Maintenance Computing Platform Development
GPU Assembly and Debugging

Module 1: GPU Hardware Basics

    1.1 GPU Fundamentals
            • GPU vs. CPU: Architectural Comparison and Application Scenarios
            • Overview of NVIDIA, AMD, Intel GPUs (Datacenter vs. Consumer Grade)
            • Major GPU Computing Architectures (CUDA, ROCm, OpenCL)

    1.2 GPU Specifications and Selection
            • Introduction to Tensor Cores, RT Cores, CUDA Cores
            • VRAM Capacity and Bandwidth (HBM vs. GDDR)
            • Impact of PCIe Lanes (PCIe Gen4 vs. Gen5) on Performance
            • Multi-GPU Interconnect Technologies (NVLink vs. PCIe)
            • GPU Selection Guide for AI / HPC Workloads (A100, H100, RTX 4090, MI250X)

    1.3 GPU Server Hardware
            • Comparison: Server vs. Workstation vs. Laptop GPU Deployment
            • GPU Power Requirements (TDP, 8-Pin / 16-Pin Power Connectors)
            • Cooling Solutions (Air Cooling vs. Water Cooling vs. Liquid Cooling)
            • Rack Installation and GPU Server Environment Requirements



    

Module 2: GPU Assembly

    2.1 Physical Installation of GPU

            • Selecting a Compatible Motherboard (PCIe x16 Support, Multi-GPU Slots)
            • Installing GPUs in Server / Workstation
            • Multi-GPU Setup (SLI / NVLink Bridge)
            • Correctly Connecting Power Cables (ATX / Server PSU)
            • Optimizing Case Cooling (Airflow Design)

    2.2 BIOS / Firmware Configuration
            • Checking BIOS Settings (PCIe Lanes, Resizable BAR)
            • BIOS Updates and GPU Compatibility Check
            • IPMI Remote Management for GPU Servers (Data Center Use)




Module 3: GPU Drivers and Software Environment

    3.1 GPU Driver Installation
            • Installing NVIDIA / AMD / Intel Drivers (Windows & Linux)
            • Using CUDA / ROCm for GPU Computing
            • Driver Version Management (NVIDIA Driver, CUDA Toolkit)
            • Checking GPU Recognition (nvidia-smi, rocminfo)

    3.2 GPU Computing Frameworks
            • Deep Learning Frameworks (TensorFlow, PyTorch, JAX)
            • GPU Acceleration Libraries (cuDNN, cuBLAS, TensorRT)
            • GPU Job Schedulers (SLURM, Kubernetes + GPU)




Module 4: GPU Performance Optimization

    4.1 GPU Performance Testing
            • Monitoring GPU Status (Temperature, Power Consumption, VRAM Usage)
            • Using nvidia-smi, gpustat to Monitor GPU
            • Benchmark Testing (CUDA-Bench, Geekbench)

    4.2 Overclocking and Power Management
            • GPU Overclocking Tools (Precision X1, MSI Afterburner)
            • Power Limit Management (nvidia-smi -pl to Set Power Cap)
            • Cooling Comparison: Air vs. Water Cooling

    4.3 Multi-GPU Parallel Computing Optimization
            • Data Parallelism vs. Model Parallelism
            • NCCL Library for Optimizing Multi-GPU Communication
            • Load Balancing and Dynamic Scheduling Strategies




Module 5: GPU Fault Diagnosis and Maintenance

    5.1 Common GPU Issues
            • Crashes Due to VRAM Shortage (OOM Error)
            • GPU Load Imbalance (Bottleneck Analysis)
            • Thermal Throttling Due to Overheating

    5.2 Troubleshooting Tools
 
           • Using dmesg / journalctl to Check Driver Error Logs
            • Generating Diagnostic Reports with nvidia-bug-report.sh
            • GPU VRAM Testing Tools (MemTestG80 / CUDA Memtest)

    5.3 Server-Level GPU Maintenance
       
     • Regular Dust Cleaning and Thermal Paste Replacement
            • Power Supply and Power Stability Checks
            • NVLink Connection Inspection




Module 6: GPU Server Cluster Setup

    6.1 Distributed GPU Computing
       
     • Multi-Node Multi-GPU Configuration (RDMA, InfiniBand)
            • Kubernetes GPU Container Management (Docker + GPU)
            • Training Large Models with Horovod, DeepSpeed

    6.2 Cloud GPU Computing
           
 • Using GPU Instances on AWS / Azure / Google Cloud
            • Cloud GPU Cost Optimization (Spot Instances vs. On-Demand)
            • Cloud vs. On-Premise GPU Cost Analysis


GPU Assembly and Debugging.jpg

GPU Assembly and Debugging


Back to top

Contact Us

+1-8259866358 Email: infor@novatech-alberta.com 09:00:00 - 18:00:00
Copyright2025@NovaTech